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UNSTEADY TURBULENT BOUNDARY-LAYER ANALYSIS

By

R. E. Singleton*, J. F. Nash*, L. W. Carr**,
and V. C. Patel***

®*  lockheed-Georgia Company

** U.S. Army Air Mobility Research and Development Laboratory,
Ames Directorate

*** |nstitute of Hydraulic Research, The University of lowa

SUMMARY

The governing equations for an unsteady turtbulent boundary layer on a swept infinite
cylinder, composed of a continuity equation, a pair of momentum equations and a pair
of turbulent energy equations which  include upstream history efforts, are solved
numerically. An e«plicit finite difference analog to the partial differential equations
is formulated and developed inio a computer program. Calculations were made for a
variety of unsteady flows in both two and three .i:~nsions but primarily for two
dimensional flow fields in order to first understand some of the fundamental physical
aspects of i.asteady turbulent boundary layers. Oscillating free stream flows without
pressure gradient, oscillating retarded free stream flows and monotonically time-varying
flows have all three been studied for a wide frequency range. It was found that to the
lowest frequency considered, the lower frequency bound being determined by economic
consicerations (machine time), there weresignificaont ‘-~ teady effects o the turbulent

boundary layer.



The expected phase shifts in wall shear stress and displacement thickness were found,
as observed by other investigators. Besides the indirect effect of unsteadiness via the
pressure gradient, the turbulent boundary layer is apparently affected airectly by the
unsteadiness. This effect is clearly seen in flows approaching zero wall shear stress
conditions. Unsteady turbulent boundary layers were able to penetrate deeper into
the adverse pressure gradient whether or not the pressure gradient was alleviated by
unsteady free stream effects (i.e., onset of zero wall shear stress was delayed in either
case compared to quasi-steady turbulent boundary layers}. For some flow cases, the
differences were quite large at high frequencies. The unsteady displccement thickness
and wall shear siress approached the zero wall shear stress condition quite differently
from the approach of the corresponding quasi~steady values to separction (i.e. no
singular behavior was apparent in the unsteady case). For the oscillatory flow cases
considered, the quasi~steady wall shear stress values were a good approximation to the
corresponding unsteady values for the entire frequency range considered, provided the
flow was nowhere close to zero wall shear stress conditions. For these same frequency
ranges, the same cannot be said of tlie displacement thickness values, however. The
displacement thickness was not represented well by the quasi-steady model even at

relatively low {requencies.



INTRODUCTION

Time-dependence is a conspicious feature of the flow over a helicopter rotor in
translating motion, and it has lor 3 been suspected that the effects of time-dependence
might play an important role in the development of the boundary-layer on such a rotor.
This suspicion was heightened when it was found (ref. 1) thet quasi-steady calculations
of the boundary-layer development indicated gross separation over nearly one-haif of the
blade disc of a rotor which was known, from experiment, to be unstalled. Although the
pessimistic outcome of these calculatiors could not unquestionably be attributed to
unsteadiness in the boundary~-layer, it was clear that a study of the effects of time-
dependence was urgently needed in order to help isolate the important ingredients of

this area of rotor aerody namics.

The study of the unsteady turbulent boundary-layer is, of course, important in o wider
context too. Dynamic stall affects, not only helicopter rotors, but also the blades of
turbines and compressors, and the aerodynzmic surfaces of aircraft in maneuvering flight,
Finally, but not of least significance, the subject is of substantial lundamental interes,
and o greater understanding of it can be expected to assist indirectly in the understanding

of a much wider range of boundary-layer flows.

The subject of unsteady boundary layers is in its infancy, and the subject of unsteady
turbulent boundary layers was virtually untouched until the last three or four years.

Since then the differential method of Patel and Nash (ref. 2), and the integral method



of McDonald and Shamroth (ref. 3), for calculating two-dimensional flows with both
spacial and temporal variations, have been published. A few other methods have also

appeared which treat only temporally-varying flows (refs. 4, 5).

One objective of this work was to develop further the method of Patei and Nash, ar.d
extend 't to infinite-yowed~cylinder flows as well as two-dimensional flows. A few
calculations have been done using this new capability. The second objective was to
perform numerical experiments to explore some of the properties of time~dependent
turbulent boundary layers, especially those which relate to unsteady separation and
dynamic stall. Within the scope of this latter objective it was considered important to
try to determine the rar.ge of validity of quasi-steady methods. Time-dependent
calculations are more difficult to perform ano are more expensive to perform than
steady ones, and it is helpful to know the point, in terms of increasing unsteadiness of
the flow, beyond which the added complexity ond expense have to be incurred in order

to obtain useful results.



DcSCRIPTION OF THE METHOD
Nature ot the Flow Considered

The method is designed to calculate the time~dependent, incompressible, turbulent
layer on an infinite yawed cyclinder. Cartesian coordinates are placed on the
developed surface of the cylinder (whose radius of curvature is assumed to be every-
where large compar. J with the local boundary-loyer thickness); x is measured normal

to the generators, y normal to the surface, and z along the generators.

The velocities in the x-, y~, and z- directions are expressed in the form U+ u, V 7 v,
W + w, respectively, where U, V, W, u, v, w are all functions of x, y andt. They
are not functions of z because the flow is assumed to be invariant in the direction
parallel to the generators of the cylinder (ref. 6). The zomponents of velocity U (x,y,t)
Vix, v, 1), W(x, y, t) are defined as ensemble averages, taken over a

large number of realizations of the same basic flow, or successive flows with the same
time-history and the same boundary conditions, e.g. successive cycles of o stable
oscillatory flow. The components u, v, w represent the random fluctuations about U,

V, W, and by implication the ensemble averages of u, v, w are identically zero.

Governing Equations

The equations of . tion for a flow of the type described above can be derived from the

time-dependent Navier-Stokes equations by replacing the three velocity components by



U+ u, V+v, W+ w (as defined above) and forming the ensemble average of the
resulting set. Introduction of the boundary-layer approxit.-ations, and restriction to

flows with zero z~ derivatives, then yields the two momentum equations for L' and W

dU +U B +Vv AL+ L %+ B_(U.v)=o

at dx dy P Ax dy
Qw+uaw+v_aﬂ+§-(w)=o
ot dx dy ay

together with the statement that the pressure is constant through the boundary layer.
In the two momentum equaticns, uv, vw are the ensemble averages of the products
uv, vw, respectively, and have essentially the some meaning as the Reynolds stresses
appearing in the steady turbulent boundary-layer equations. Thus the shear stresses

1, T, are given by T 2-p  and T, *-p w

The continuity equation retains its usual form

U, v =0
d x Y

The above equations are identical to the ones that would have been derived if U, V,
W had been spacified as time averages. However, in order to define time averages, it
is necessary to make the stipulation that the time scale of the turbulent motion is short
compared with the time scale of the motion as @ whole (ref. 3). A number of flows of
practical interest involve unsteadiness of the boundery conditions which is too rapid
for an adequate distinction to be made, particulorly when due attention is paid to the
importance of the large-eddy motions in the boundary layer. These motions can hove
a time scale comparable to the time taken for o particle to be convected a distance

many times the boundary-layer thickness.



To state, as we have done here, that the equatiors involve ensemble~uverage, rather
than time-average, quantities, does not mean that it will not be necessary, in due
course, tc make the assumption ‘1ot ensemble averages can be apErox'imofed by time-
averages. The important point to be made, at this stage, is that the equations are

mos. secure when viewed as ensemble-average equations.

The turbulent shear stresses are assumed to behave according to the rate equations used
in the method for steady three-dimensional flows (refs. 6, 7), but with the convective

derivative extended to include the time derivative:
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where @ _.®,  ar> given by Equation (12) of Reference 7, which leads to co-directionality
of the shear stress "vector” and the rate-of-strain vector. The assumption of co-
directionality con be relaxed, if desired, by putting

‘I’x= ¢, =0.
The functions ajr 9, and L are assumed to be the same functions as apoear in the steady-
flow method (References 6, 7); a, and L are shown in Figure 1, ond a, = 0.15. This
assumption implies (a) that the ensemb le -average quantities uv, vw can be opproximated
by the time-average Reynolds stresses, and (b) that time~dependence in the rean flow
has a negligible effect on the structure of the turbulence*. Neither of these hypoiheses
has been verified experimentally, and clearly there is an urgent need to do so. Fc- the
present, these hypotheses have to be made in order to proceed at all, but it must be
stressed that some of the conclusions from this study may reed revision if later experi-
mental work shows that certain underlying assumptic-s in the method are seriously in

error.

Method of Solution

The governing equ ations consist of two momentum equations, for U and W, the continuity
equation, and two rate equations for uv and vw. This set of equations is h, - 2rbolic, and
is integrated in a three~dimenrsional domain (x, y, 1) by means of an explicit finite-
difference method. The calculation scheme is illustrated in Figure 2. The overall

scheme is similar to that used by Patel and Nash (Reference 2); values of «ll the

*The turbulent energy equation does allew for inertia in transier of information (energy
from mean flow to eddy to heat), but the me:hanism itself is not a function of the
unsteadiness,



dependent variables are calculated over successive planes, t = constant, and the

calculation advances in the t=direction. In ire present method, howaver. the dependent

variables include W and vw in oddition to U, V anc uv. In addition, the present
method involves a more sophisticated numerical schema (Reference 2), and a more
flexible integration domain; the height of the domain is aliowed to vary with x as

well as t (Figure 3).

Boundary conditions for the calculation consist of:

o initial profiles of U, W, Uv, vw versus y for t = 0 and all x,
o initial profiles of U, W, Uv, vw versus y for x = O and all t,
° §y-=a_w=m=a_ﬁ=0,ond
dy Ay dy 9y
wzvw =0
aty - 1.258 , 1.258 being the local height of the
integration domain, which varies with both x and t.
o appropriate boundary conditions ot y = 0.

The wall boundary condition is handled in the same way as in the steady-flow method
(refs. 6, 7). The outer numerical calculation is matched to an approximate solution,

based or: the luw of the wall, aty /§ = 0.05.

The numerical scheme for the outer layers, 0.05 < y/8 < 1.25, is equivalent
to the one-step staggered-mesh scheme described in Reference 8 and is identical to the

sc;heme used in the steady-flow method (refs. 6, 7).



Five-point central differences are used for the y~derivatives, and either 2- or 3-point
backward differencos for the x~derivatives; backward differences have to be used for
d/dx, if the U-component of velocity is positive, to avoid the upstream propagation

of information.

The maximum permissible t~step is dictated by stability considerations. In most situations
the t-step is roughly proportional to the smallest value of § at the particular t-stotion
usually & at x = 0. As aresult, the computation time varies inversely as the thickness
of the upstream boundary layer; the smaller the value of § at x = 0, the longer the
run. Figure 4 shows some typical run times on a Univac 1106 computer. For most of

the calculations, 8x= o WS taken to be 0.00444, since this value is used in Ref. 2,

giving a tynical computation of about 5 minutes.

For initial boundary-layer thicknesses much smalier than this, the run times become
excessi.e, and a scheme was developed for segmenting the integration domain so as to
reduce them. If & increases substantially from x = Otox = 1 (as it generally does
if Sx . is small), the -omputation is inefficient if a constant t-step, determined
from 5 ‘= O is used for all x. A continuously variable t-step would be awkward to
work with, but it is possible to segment the calculation and use a different (constant)
step-length in each segment. In the scheme tried, segments were chosen such that the
step~length increased by a factor of 3 from each segment to the next. The factor of 3
meant that the integration math in any one segment merged smoothly into that in the
adjacent one upstrear:  Figure 4 shows that the scheme was successful in reducing the
longest computer times, but it could not reduce the shorter ones because the growth of

the boundary-layer thickness was usuaily insufficient to permit more than one or two segments.
10



Comparison with Forward Marching Method

To qualify the accuracy of the computer program, sample calculations were carried out
for both two-dimen..onal and swept infinite cylinder flow fields in the time-relaxation
mode, in which the boundary conditions are held constant and a steady=-state solution is
approached asymptotically for "large” times. In practice, "large times" tumed out to
be about 2.5 time units, where a time unit is the time required for a fluid particle
traveling with some defined characteristic velocity to move a distance of one chord
length. The results were compared to solutions obtained by the more conventional
forward-marching procedure and the correlation is at lea. - as good as that obtained

previously by Patel ond Nash (Reference 2).

Figures 5 and 6 show the results of a comparison between the two methods for the case
of flow over an infinite yawed cyt’nder, where the chordwise pressure gradient (Bp,’a x)
is favorable over the forward part of the cylinder and adverse over the rear. In Figures
5 and 6, all lengths (x, y, &*) are made dimensionless by division by the chord-length
of the cylinder, velocities by division by Qg,, (the free -stream valocity at infinity),
and shear stresses by division by eroz. Figure 5 shows the predicted chordwise
variations of 8%, 7 " and T wy* The greatest discrepancies between the two solutions
are 1.2% in Twy (at x = 0.26) and 3.0% in 8*(at x = 1,0). Figure 6 shows the
predicted chordwi;e and spanwise velocity profiles at x = 1, and it is evident, again,

that the two methods produce nearly identical solutions.

Based on these results, and similar result for two~dimensional flows, it was concwuded

that the computer program was performing satifactorily for flows in which the bourdary

n



conditions are held constant with time. There was no reason to suppose that the same
would not be true also for flows with time-varying boundary conditions, and it was

decided to proceed to the calculation of fully unsteady turbulent boundary layers.

COMPUTATIONAL EXPERIMENTS

The properties of time~dependent turbulent boundary layers were studied by carrying out
computational experiments using the calculation method described in the preceding
sections. Five flow situations were selected, designated Flows A through E, and
calculations were done for each flow for a range of relevant parameters. Most of the
calculati . s were for two-dimensional flows, although an infinite-yawed-cylinder
version of Flow A was examined and the results are included here. Flows A and B were
oscillatery flows; Flows C and D were monotonically time-varying, while in Flow E

the extemnal flo.s ‘vas first varied monotonically and subsequently held steady allowing

a velax-tion of the boundary layer towards equilibrium conditions.

The calculations are discussed in detail below, and the results are presented in Figures

7 through 27. In these figures, cs before, lengths are made dimensionless by division

by the ength of the plate on which the flow is developing (unity), velocities by division
by Qe (which is equal to er in the case of two~-dimensional flows), and shear stresses
by division by eroz {or p Uzeo in two dimensions). Time 1s made dimensionless
by multiplication by Ug, and division by the length of the plate. For the oscillatory

flows a reduced frequency, w, is defined as

12



w=27%/P
where P is the period of the motion in time units. If w=27, a complete cycle takes
place in the time taken for a fluid particle, moving with velocity Ueg,, to be convect-
od the length of the plate. In the monctonically time~varying flows, w is retained as a
measure of the rate of distortion of the flow, i.e. 1/w is a characteristic time of the

motion .

Oscillating Flows Over Flat Plates

The flow A is defined as a free stream flow «.scillating harmonicclly, according to the

equation

= 1 + Asinwt,

er

over a flat plate. The amplitude, A, ond frequence, «, were varied over a reasonable
range to determine their effects on the response of the turbulent boundary layer charac-
teristics to this oscillatory flow field. The initial conditions for this calculation were
taken to be the asymptotic steady stote solution obtained as time approaches infinity

(t = 2.5 is sufficient) for A = 0. The boundary conditions for all time at the entrance
station for the boundary layer (x = 0) were set by making §, ~ (Ue/er)-.2 and
scaling the standard initial profiles accordingly. This condition, in fact, is just the
requirement that the entrance conditions respond instantanecusly to the edge velocity

at any instant of time, i.e. quasi~steady conditions. he Reynolds number based on
chord length (unity) was taken to be 10/ and the initial boundary layer thickness was

13



.00444. The computer program was allowed to run a few time units (t =2 seems to be
sufficient) in order to let transients die out and the output was generated at several
chord petitions for several periods. Quasi-steady solutions were generated by selecting
wt = constant and utilizing the forward marchiiy numerical method for steady-state

flows.

Figure 7 shows the results for a ten-fold frequency range at an amplitude, A, of 12.5%
and Figure 8 shows the same frequency range at an amplitude of 50%. From Figure 7,
it is seen that the unsteady wall shear stress anticipates the quasi-steady values; i.e.
there is a phase lead between wall shear stress and the external velocity, Ue' Similar
effects have been predicted for oscillatory laminar boundary layers (Reference 9), and

for perturbed turbulent boundary layers (Reference 3).

In the laminar case the phase lead increases with frequency, up to a maximum value of
/4. In the present results, however, the phase lead is considerably smaller than this
(see Figure 9). The phase leads predicted here are also smaller than the values calculated
by McDonold and Shamroth (Reference 3). Their results may have been compromised by
inadequacies in -he velocity-profile model used in their integral method, and the dis-

agreement may not put the validity of the present results in question.

At low frequencies, a phase lead is apparent in 8* also; this phase lead decreases with
increasing frequency, and at high frequencies the unsteady 8* actually iags behing the
quasi-steady values. The average level of §*, for the unsteady flow, increases with
both increasing frequency and increasing amplitude, until the average unsteady 5* is

more than twice the average quasi-steady 8* when A= 0.5 and @ =15.7 (Figure 8).

14



At the 50% amplitude change (Figure 8) the phase lead in the unsteady wall shear stress
appears to decrease more with increasing frequency than at the 12.5% amplitude change.
A peculior skewing appears in the 8* curve at the higher amplitude although the shear
stress curves still remain symmetric about their mean values. Apparently, for this case
the various states the turbulent boundary layer passes through at each instant of time due
to a change in the extemal velocity are not reversible when the external velocity change
is reversed. This situation occurs whenever the condition of zero wall shear stress is
approached as is the case in Figure 8. The 5* variation for the high frequency case in
Figure 8 can be approximately represented by a model in which the velocity profile moves
in lock-step with the external flow. Such a model would be valid as w==00, when
aU/at would dominate the other terms in the equationt of motion. This "high=frequency
approximation” allows the statement U38*= constant. This result is showr in Figure 8,
the constant having been determined for the best curve fit; it works equally well for the
lower-amplitude case shown in Figure 7. Whereas the displacement thickness is well
represented by the high-frequency approximation, the wall shear stress continues to be
well represented by the quasi~steady approximation, and it is remarkable that it works

well over such a wide ronge of both frequency and amplitude.

Figures 9 through 12 show a comparison of the turbulent results with the la.rinar results
of Lighthill (Ref. 9). In Figure 9, a comparison is given of the laminar wall shear stress
phase lead with the turbulent values versus the reduced frequency, w. The turbulent wall
shear stress phase lead is much reduced from the laminar values. Figure 10 shows a com-
parison of the laminar shear stress with the turbulent values versus reduced frequency, w.
Three curves are shown for each case corresponding to three values of the argument wt.

The values for the high frequency approximation in the laminar case when wt = or

15



31/2 are identical and conseg.ently are shown as only a dashed curve. The turbulent
boundary layer results display the same trends as in the laminar case. The Figures 11 and
12 give graphs of the displacement thickness values analogous to the Figures 9 and 10.
Once again it is seen that the turbulent boundary layer results display the same trends

as in the laminar case.

A variation of the flow A is that of a swept infinite flat plate immersed in a flow oscillating

harmonically in the chordwise direc*'~n only, according to the equations

y)
=2 = [l + A sin wt] cos A
Qeo

w

-2 - sin A

where Qeo is the velocity magnitude at t =0 and A is the sweep angle. Results of this
calculation are shown in Figure 13 for the 50% amplitude change. The curves for §* and
(T,,)x have the same characteristics as in the two-dimensional case with the exception of
the skewing of the chordwise wall shear stress at the higher frequency value. This result
is probably accentuated by the closeness of the chordwise wall shear stress to zero.
However, the spanwise wall shear stress, in contrast to the chordwise wall shear stress,
lags the quasi-steady values and this phase lag apparently increases with increasing

frequency.

16



Oscillating Retarded Flows

The flow B is an oscillating retarded flow field defined by the equation

sin wt)x,

Ue = l+(A°+A

U
e
o

1

where A, = -0.2. Calculations were made for flow B ir the same fashion as for flow A
with the exception that the initial conditions were taken to be the steady state solution
obtained as time approaches .nfinity (about 2.5) with A, = 0. Figure 14 shows the

results for an eight-fold frequency range at the trailing edge when the amplitude change,

A/(1 + A,), is 12.5% . and Figure 15 shows the results for a ten-fold frequency range

at the trailing edge where the amplitude change is 50%.

From Figure 14, in contrast to the oscillating flow on a flat plate, flow B gives an unsteady
wall shear stress and displacement thickness which lag their quasi-steady values. Further-
more, this phase log decreases with increasing frequency. It appears that the average
unsteady §* is about the same as the average quasi-steady §* for the entire frequency
range considered. At an amplitude of 12.5%  the boundary layer does not come close
to zero T, anywhere during the cycle. At the higher amplitude of 50%, however, T,
becomes very small near the "bottom" of the cycle. Moreover, and this is most interesting.
the quasi-steady boundary layer would actually separate during this part of the cycle
(Figure 15). Thus the unsteady boundrry layer manages to remain attached ( 7, > 0)
throughout the cycle, even though the maximum instantaneous retardation would be

great enough to cause separation if it were maintained for a long time, It is significant

that, in the present case, the effect of time-dependence is to delay the unset of

17



vanishing Tw whereas the opposite occurs in the case of the oscillating flat plate (Flow A).
In that flow, the wall shear stress, at the bottom of the cycle, would eventually decreoss
to zero if the amplitude were increased sufficiently; on the other hond, quasi-steady
calculctions would never indicate separation unless the amplitude were so large as tc

stagnate the exrernal flow.

To return to Figure 15, over the part of the cycle where the quasi-steady calculation
indicates separation, the quasi-steady values of 8* are very large. The unsteady values,
in contrast, are well behaved throughout the cycle. Figure 15 shows phase lags similar
to the lower amplitude case in Figure 14  Again, if points close to zero wall shear stress
conditions are excluded, it is remarkable how good an approximation the quasi-steady
wall shear stress values are to the unsteady values in a retarded fiow field for a wide
range of both frequency and amplitude. The results of the high frequency approximation
for 8* (Ug8* = constant) are also shown in Figure 14, and as in Figure 8 the agreement

with the calculated results is excellent.

Monotonically Time = Varying Flows
Computational experiments were performed for three flows in which the external velocity
varied monotonically with time, instead of sinusoidally as in Flows A and B. The three

flows, were two-dimensional, and were defined as follows:

Flow C: & =1 . wtx

18



u

Flow D: e =1+ wtl-x)
U
eo
U
Flow E: _e =1+ wt(l-x) for 0 < tStf
U
e
o

Ue =1+ wtf(l-x) fort >t
U

e
o

f

Only positive values of w and t were considered, and so all three flows involved
decelerating extemal flows. In Flow C t! . external velocity distribution "pivoted"
about the leading edge of the plate (x = 0), and this flow might be regarded as an

idealized model of the flow in a channel with one wall pivoted and rotating outwards.

In Flows D and E the external velocity distribution pivoted about the trailing edge of
the plate (x = 1), and these flows might be regarded as idealized models of the flow
over an airfoil pitching continuously (Flow D), or pitching up to some positive angle of

incidence and then being held still (Fiow E).

The main objective was to determine the onset of zero wall shear stress and to examine
the variation of its point of onset with the rate of distortion of the external flow, o .
Small values of w indicate slow distortion of the external flow, and large values indicate
rapid distortion, As w—=0, steady-tlow conditions ure approached, and fini:2 values
of wt (i.e. finite values of BU'/ax)ore reached only for "long" times: t —00,
Steady-fiow calculations, done for comparison with the time-dependent ones, could be

performed either by the time-relaxation process or by a forward-marching procedure .

In most cases the latter method was used for reasons of machine economy; the run-time
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necessary to reach a steady-state solution in a time~relaxation calculation becomes long
becuuse of the long convection times associated with the small velocities in the flow

close to separation.

The second objective was to examine the general character of the solut * the hope of
shedding some light on the behavior of the unsteady turbulent boundary approaching

a point of zero wall shear stress.

The calculations for all three flows were done for a Reynolds number of 107 based on er
and the length of the plate (unity). The initial conditions at t+ =0 corresponded to steady,
flat-plate flow with Ug=Ue_ and on upstream boundary-layer thickness, at x =0 of
0.00444. For Flow C, the external velocity at x =0 was con:tant for oll time, and the
assumption of cinstant boundary-layer thickness at that point seemed reasonable and this
was made. However, in Flow D, Ug at x =0 is not constant but increases with time, and
the problem of constructing reasoncble initial conditions there presented a matter of some
concern. |t was decided to try to determine the sensitivity of the solution to changes of
the initial conditions at x =0, Calculations were dona for a few representative cases

with initial conditions as follows:

(a) flat-plate velocity and shear-stress profiles with constant boundary layer
thickness (= 0.00444),

(b) flat-plate velocity and shear=stress profiles with boundary layer thickness

-0

decreased as (Ue/U‘a ) -2 to account for the change in local Reynolds

o

number,
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(c) velocity profiles, with boundary layer thickness of © 0444, generated by
add’ng a constant increment of velocity (= y,-u, ) at all values of y, to
)
approximate conditions appropriate to w —= J0; the “hecr stress profiles for

this case were identical to those in (a) except in the immediate vicinity of

y = 9 (where Tw -—=00).

In all the cases run, vanishing wall shear stress was predicted to ~ccur, ar x =1, at
values of wt which were within 1% of each other for the three sets of starting conditions.
The calculations indicated larger boundary-layer thickness (up to 36% larger) when (c)
was used, compared to (a) end (b). However, these larger values of 8 occuired at small
values of ». and the differences were much smaller near x =1. Nearly identical results
were obtained wi*h (a) and (b); the predicted values of 5 were the same to within 1%

for all values of x greater than 0.02,

Thus it appeared that the solution was fairly insensitive to the upstream starting conditions,
and that generality of the conclusions from the present work was unlikely to be compro-
mised by an unfortunate choice. It was decided that the assumption of constant § was

reasonable, and this was made in all the subsequent calculations.

Figure 16 shows some results for Flows C and D. The calculations were run until the
wall shear stress, T, just reached zero at x =1, and the value of wt at this ‘nstant was
VU
. . . . e .
recorded; wt is equal to the instantaneous velocity gradient - > The ratio of

(wt).rw =0 to its value when w==0 is plotted as a function of w in the left-hand diagram.

The results show that, for both rlow C and Flow [, T, vanishes, at » = 1, ot a higher
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value of wt than in quasi-steady flow; in othe:r words, ‘here is a delay in the omet of
vanishing 1,,. In Flow C, (mf).‘.w — ( increases to ¢ value some 50% greater than that
for quasi-steady separation, and then remains approximately constant for w >0.6. In
Flow D, the value of (wt).rw — 0 increases continvousiy with increasing w, ond there is

a substontial delay in venishing T, for large values of w. For example, v th w =1C,
(un‘).rw — ¢ is some five times creater thon it is when w—=-0 (quasi-steady). At as> higii
values of wt, the streamwise gradients are so large that the validity of the boundary-
layer approximations becomes questionable. For this reman, the results for Flow D,
withw > 8, should be treated with caution, and the;s are shown by dashed curves in
Figure 16. The trend suggests thar, for high enough values of w vanishing we!l shear

siress might never occur.

One of the effects of time~dependence is to modify the streamwise pressure gradient,
3p/ax. For flow over an infinite yawed cylinder, Euler's equation for flow in the

external stream takes the form

bue s U aue

+ 1
at ax p

o

P =0

X

Qs

The equation shows that dp / dx can be either incrcased or decreased, depending

cn the sign of AU/ dt. The quuntity R, where
R = -( aUe/ot)/(]_ 3p )\
[

is @ measure of the contribution of ..~ .we total pressure gradient.
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Posit:~e viiues of R correspond to cases where dp /dx  is increased, i.e. becomes

more adve:. e, nagative volues to cases where the adverse pressure gradient is alleviated.

The r" jhi-hand diagron: in Figure 16 shows the results for Flows C, D ploted versus R.
Act: Llly, R is = function of x, ond the vaiies plotted correspond to x =0.5. Flow
D generates negctive values of R and the delay in the onset of zero T, tokes place in
an environment where the adverse pressure gradients are alleviated by the effaects of
time-dependence. On the other hand, Flow C generates positive values of R and,
while the effects are less marked thon in Flow D, there is again a delay in vonishing
T and it occurs in the face of an increasingly adverse pressure gradient. 'ndeed,
at the highest value of w considered the valve of ap/ax is some 300 times greater

than was necessary to couse separation of x = 1 in steady flow.

The inference is that the augmentation or alleviation of Jp / d x does play a part
in the effect of time.-lependence on vanishing wall shear stress, but that, at least
for fiows similar to the present ones, it is not the only factor to be considered. The

fact that a delay in vanishing T occurred even when QJp [ dx was increased

suggests that time-dependencc influences the flow directly os well as via 3p [ dx .
It might also be worth mentioning that, regardless of the sign of aue/ dt and its
effect on dp/dx , the point of vanishing 7 can move upstream only if U/ at

in the vicinity of the wall is locally negative.

in Figures 17, 18, T, and &%, from the calculations for Flow C, are plotted versus

x for a low (0.25) and a high (31.4) value of w. The results correspond to the instant
of time, and the instantaneous value of wt, where T just vanishes ot x = 1. The
results of two quasi-steady calculations are also plotted for compariscn. In one, the

value of wt is the same; in the other, the value of wt is reduced such that separation
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occurs ot x = 1. With wt the same, separation of the steady boundary layer occurs
chead cf x = 1 {vanishing wall shear stress is delayed in the unsteady case). In order
to obtain separation ot x = 1, it is necessary to reduce «t, i.e. to reduce the stream-

wise adverse pressure gradient.

Figures 19, 20 show the corresponding results for Flow D, again for a low and a high
value of w . It will be noted, in Figure 20 especially, that the values of T, for the
two quasi-steady runs are substantialiy different from one another particularly at low
values of x. This difference is a consequence of the different levels of Ue between
the two quasi-steady flows; in Figure 20, for example, the two values of wt used in
the quasi-steady calculations are different by a tfoctor of 9. Plotting rw/( p Uze),
rather than tw/( p U2e ) would have reconciled the results for small x, but would

()
have obscured important trends near separation.

All four sets of results (Figure 17 through 20) exhibit essentially the same characteristis.
The steady-flow separation is associated with increasing values of -( 3 tw/ ax),
as the separation point is approach, reminiscent of the square-root singularity observed
in the laminar case. Correspondingly, & increases rapidly, agoin, in a quasi-singular
manner. In contrast, in the time-dependent cases, the approach to zero wall shear stress
is more gradual: the value of -( Btw/ dx) decre~<es rather than increases with x.
The results suggest that the delay of vanishing L is directly linked to the absence of
the square-root singularity (or something close to it) in the tw(x) variation. The
curves of §* also depict important differences. Particularly at the higher values of

w, 6% is smaller and has a markedly smaller slope as T, 9oes fo zero.  In short,
there is no evidence of singular behavior, and thus the results support the views of

Sears (Reference 10). It was not possible to continue the calculations beyond the

point of instantaneously zero wall shear stress, and so the question of the existence
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of o singularity downstream of this point cou!d not be addressed. Neither could -.al-
culations easily be done for the situation where the point of zero T, is moving dow -
stream. For this case, the Secrs model (Reference 10) of unsteady seoaration wou.d

predict that the singularity lies ah.ead of the point of vanishing T,

The results presented so far, for Flows C. D, all correspond to the instant of time ct
which L 0 ot x = 1. Further studies were conducted to examine the upstream

movement of the point of vanishing T, to smaller values of x.

Figure 21 shows curves of T,, Versus x for increasing time; these are for Flow D with
w= 1.57. As stated before, T, increases rapidly with time, for low values of x,

because ot the increase of Ue' When L fell to zero at x = 1, the row of node

points of the integration mesh, corresponding to x = 1, was dropped, and the calcula-

tion was continued to largervalues of t.

Additiona! rows of node points were dropped as the point of zero T, moved upstream.
Figure 22 shows the corresponding curves of §* versus x. It will be noted that, up to
otimet=1.9, &*i:independent of time for x less than about 0.2. This result pro-
vides indirect confirmation that the assumption of constant 5 (and therefore nearly
constant §*) at x = 0 was o reasonable one. It will be noted, also, that the curves
become progressively steeper as the point of zero T, Moves forward. |t is not clear,
at this stage, whether a singularity is being re-established, or whether this effect is
due to numericai error as the result of there being fewer node points left in the inte-

gratior. net.

Figure 23 illustrates the veiocity and shear stress profiles calculated for Flow D (with

w= 1.57)at x =0.67. The wall shear stress vanishes at x = 0.67 when t = 1.93,
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i.e. when wt is opproximately 3. Quasi-steady separation would occur at x = 0.67
only if wt were reduced to 1.55. The profiles corresponding to this latter situotion
are shown for comparison. It is interesting to note that the velocity profiles ore similor
in thicknes: and shape, the only :i ‘nificant difference being the edge velocity, Ue;

thus plots of U/Ue versus y would look almost identical. Fu.thermore, zhear
stress profiles are similar in shape and would fall close 10 one another if plotted in

terms of 7/ pu? ).

This similarity in shape is surprising in view of the difference in behavior of frw(x)

and 8*(x) as the point where T, = 0 is approached.

The same time-dependent flow (Flow D, with @ = 1.57) reaches wt =1.55 when t is
approximately one. The profiles corresponding to this condition are shown in Figure 23
for comp.rison both with the quasi-steady results, at the same wt, ond with the results
for Flow D at the later time, t = 1.93. The comparison shows that the two velocity
profiles with the same edge velocity, U_, are substantially different in thickness and

shape. Moreover, the maximun. shear stress is quite different.

Thus it would appear that the similarity between time-dependent and quasi-steady flows
is closest when they are compared at the points where T, = 0 in both, even though

the edge velocities are then different and even though the upstream histories of the two
flows are radically different. Conversely, development in 1he same external velocity
distribution appears to be largely irrelevant; it does not ensure the same upstream history

and does not ensure even approximate similarity between the two flows.
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Figure 24 shows the variation with time of T, oand §*at x =1, tor Flow D with
w =1.57; T,, 9oes fo zero when t =1.37. Flow E, the results of which are shown
for comparisor, is ider tical to Flow D for 0 <t €1, but fort > 1 the external flow

is frozen with wt =1.57. InFlow E, v, 90es to zero at t = 1.47.

Figure 25 shows the forward movement of the point of zero T, for Flows D, E with

w =1.57, and also with a higher value, w =31.4. In Flow D the ext2mal velocity
gradient increases continuously, and the ccint of zero ., moves forward continuously
ot least as far as x = 0.5. The higher the value of « . the more rgpidly this point
moves forwar . In the cose of Flow E, the point of vanishing T, moves forward to
the position of the quasi-steady separation point for the particular value of wt;

here, around x = 0.67. Thus fort > 1 when w=1.57, and for t > 0.05 when o =31.4,
the external velocity distribution, Ue(x), is frozen and the movement of the point of
zero is just part of the relaxation towards steady-state conditicas. It is inter-
esting to note that the time scale describing this relaxatio n process appears not to

be very dependert on the value of w corresponding to the previous unsteady external
flow. It is also interesting to note the comparatively long time recessary for the flow
to settle down to the new steady-state situation, nearly 4 time units, which (at this
value of wt) is roughly five times the time taken for a fluid particle in the external

flow to be convected from x =0 to x =1,

During the reloxation phase of Flow E, while the external velocity distribution is
frozen, the characteristics of this flow have to change from those appropriate to
time-varying conditions to those appropriate to steady-state conditicns. This
process is illustrated by Figure 26 which shows the variation of T and &* with

x and t for Flow E with w = 1.57. The shape of the frw(x) curves chianges from
one in which -( aorw/ d x) decreases with increasing x to one where it increases
with x. At the same time, the curves of §* versus x become steeper ns the point
of zero T is approached.
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Figure 27 shows the corresponding velocity and shear stress profiles. It is interesting to
note how the velocity profile approaches that for steady-state separation by a combination
of retardation and thickening which leaves the average velocity gradient, al/3y, nearly
constant. The maximum shear stress increases far more than the wall shear stress de-
creases. It increases roughly in proportion to 8, rather than to 82 which would be
predicted from mixing-length theory for a boundary layer with a constant 3U/3y. This
departure from a mixing-length type correlation between the shear stress and the velocity

gradient is to be expected in this flow because of the large streamwise gradients.
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CONCLUSIONS AND RECOMMEND ATIONS

The method developed here for calculating time-dependent turbulent boundary layers in
incompressible flow past infinite yawed cylinders is a logical development from the work
of Nash ¢d Patel on steady three-dimensional turbulent boundary layers. One of the
space di« nsions of the integration domain is replaced by time, while the three-
dimensional ty of the velocity and shear-stress vectors is retained; U, V, W, T T,

are determined in the domain (x, y, t).

The empirical content of the method, the dissipation length, diffusion function and the
ratio of the shear siress to the turbulent kinetic energy, are carried over from the steady-
flow methods. The assumption is made that the original forms of these functions still
hold, and the additional assumption is made that the ensemble averages in the time-
dependent equations can be approximated by time-averages. These assumptions have

not been verified experimentally, and until they are, the conclusions of the present
study cannot be accepted without reservation. However, the aim has been to establish
trends rother than definitive values, and it is not unreasonable to expect that these
trends will survive possible changes in the empirical irput which are called for as the

result of further experimentation.

It is quite evident, from the results shown, that there are significant unsteady effects on
the turbulent boundary layer particularly in the regime of approaching zero wall shear
stress. For the oscillatory cases examined, even for the lowest frequencies calculated,

there were significant effects on the displacement thickness. A small degree of phase
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shift was observed between the wall shear stress and the external velocity. However,
the level of wall shear stress differed little from quasi-steady values, corresponding to

very low frequency, until zero wall shear stress was approached.

The effect, on the boundary layer, of time-dependence in the extemal flow is complex,
and cannot be represented merely by a change of the streamwise pressure gradient. For
some flows the onset of vanishing wall shear stress is delayed, compared with the
equivalent steady flow, not only when the adverse pressure gradient is alleviated by

the unsteadiness, but even when it is increased. The delay was clearly demonstrated
by the monotonically time-varying flow examples where the approach to zero wall
shear stress conditions was examined. Unsteady turbulent boundary layers were able to
penetrate deeper into adverse pressure gradients (i.e. delayed onset of zero wall shear
stress) than could be accounted for by quasi~steady calculations. For some flow cases,
the differences were quite large at high frequencies. Ir. addition, the unsteady dis-
placement thickness and wall shear stress approached the zero wall shear stress
cendition quite differently from the approach of the corresponding quasi-steady values
to separation. The results support the contention of Sears (Reference 10) and others that
the point of vanishing wall shear stress, in an unsteady boundary layer, is not a singular
point. Furthermore, the results suggest that the fact that it is not a singular point has

a lot to do with the delay in vanishing wall shear stress mentioned earlier.

This study did not address the question of separation, and we have been careful to avoid
any suggestion that the point of vanishing wall shear stress is a separation point in

unsteady flow. Indeed, if separation, in the sense of flow detachment, is associated
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with singular behavior of the displacement thickness, ths present results indicate that
separation was always downstream of the point of vanishing wall shear stress for the
flows examined. Thus it would appear that separation was delayed even more by the
effects of time-dependence than was the onset of vanishing wall shear stress. There is
an urgent need for a study of the events surrounding actual separation, i.e. detachment,
of the unsteady turbulent boundary layer. With certain modifications the present
calculation method could be used to examine the development of the flow between the

onset of zero wall shear stress and the onset of separation.

This study has drawn attention ‘o the strengths and also to the weaknesses of the present
calculation scheme. The uncertainties associated with the flow model have already
been mentioned, but a few comments are in order conceming the numerical scheme for
integrating the governing equations. The explicit scheme used here is well tried,
having been employed in a range of three~-dimensional steady bourdary-layer calculations
as well as in the present unsteady-flow method. There are deficiencies in the scheme
from the standpoint of precision, particularly in the inner=layer calzulation; however,
the numerical precision is probably at least as good as the accuracy of the empirical
flow modei. The major disadvantage of the present scheme lies in the long computarion
times required. It hos not been possible to explore important low frequency ranges
because the calculations became too expensi- 2, nor was it possible to treat flows where
the boundary~layer thickness at the upstream end of the domain was small. There is an
urgent need to improve the economy of the present method, and it would seem that this
can be done only by replacing the explicit numerical scheme by an implicit one which

makes no demands on step size for stability. The conceptual framework of a suitable
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implicit scheme hos already been established. Be that as it may, the existing method
represents o very useful tool, as it stands, and a number of further investigations <. be
made even before the implicit method is in an operational state. The tools developed in
this analysis should be used to investigate the differences between the turbulent beundary
layer produced by an unsteady free stream but stationary wall and a steady free stream

but non-stationary wall. Of considerable interest would be the utilization of these

tools to calculate unsteady turbulent boundary layers which correspond to the experimental
investigations being conducted by the U.S. Army Air Mobility R&D Laboratory and the
Naval Postgraduate School in Monterey. The couinparison of these experimental data

with the theoretical values would not only serve to elucidate unsteady turbulent boundary

layers but wouid also point out ways in which the mathematical model might be improved.

Aside from these fundamental investigations, the tools developed in this research program
are ready to and can be utilized to great advantage in studying the practical problem of
pitching airfoils and dynamic stall. In particulor, an investigation can be carried out
on the question of lift coefficient overshoot with regard to when and how does separation
occur. Related problems which can be studied are the effect of frequency on displace-
ment effect and the resultant effects on pressure dist-ibution. It is entirely possible that
current tools for calculating the unsteady turbulent boundary layer can shed some light
on the bursting of the separation bubble. The capability now available for unsteady
turbulent boundary layers coupled with advanced methods for treating the potential flow
could well answer the question of how the boundary layer rolls up after separating from

the pitching airfoil .
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The analysis and computer program can and should be extended to compressible flow.
When that is accomplished, the required technology for examining the very complex

problem of shock=-unsteady turbulent boundary layer interaction would be in hand.

SUMMARY OF CONCLUS!ONS

1.  There are significant unsteady effects on the turbulent boundary layer particularly

in the regime of approaching zero wall shear stress.

2.  For the retarded free-stream flow case, the effect of time-dependence is to delay
the onset of vanishing T,, whereas the opposite occurs in the case of the oscillating

flat plate .

3.  Unsteady turbulent boundary layers were able to penetrate deeper into adverse
pressure gradients whether or not the pressure gradient was alleviated by unsteady
free stream effects (i.e., onset of zero wall shear stress was delayed in either case

compared to quasi-steady turbulent boundary layers).

4.  The unsteady displacement thickness and wall shear stress approached the zero
wall shear stress condition quite d:fferently from the approach of the corresponding

quasi-steady values to separation.

5. In contrast to the steady-flow separation, associated with increasing values of
-(at,,/2x), the time-dependent approach to zero wcll shear stress is characterized

by -(37,,/3x) decreasing.
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if separation, in the sense of flow detachment, is as:ociated with singulai behavior
of the displacement thickness, the present results indicate that separation was
always downstream of the point of vanishing wall shear stress for the flows

examined.

Regardless of the sign of 3Ue/3t and its effect on 3p/ax, the point of vanishing

T, an move upstream only if 3U/3t in the vicinity of the wall is locally negative.

For F'ow D, the solution was fairly insensitive to the upstream starting conditions
Y

allowing the assumption of 4 constant initial boundary layer thickness to be made.



Q4

suo1jouny od1adwy " | aunbiy

G0

oL x

¢'o

35



t
Increasing

Body Surface
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Figure 23, Velocity and Shear=Str~x. rofiles at x = 0.,67;
Comparison Between Flow - and Quesi=Steady Flow.
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58



*J PUD (q SMOj4 558441G 103YG ||DAL OI97 JO JuIOd 3y} JO JudwaAOW wodlsdn *gz 8inbiy

4 ‘awn)
£ z l 0
- T - 0
(o]
°n
T
m 2
(v*18 = m) 0= “(x)
:q moi4
(61 =m)
:q mo(4
4¢°0
(£G°1 = 4m
Coe_») CONO..&
‘v 1E =m)
|||||| - e _ 13 mo|4
,,ll l”l’l\
>
{£S°1 = 4m usym uazoy N\
13 mo4 { Joy

59



(0°1 = 4 v3ym uazoyy ‘/G*| =m) 3 mo4 :
55914G J03YG ||DA\ PUD SSBUXDIY| jJudwadD|dsIq jO juawdo|aaaq 9z ainbiy

o1

%
S'0 70 €0 Z2°0 ¢ 0
7 T T | T
=
o *Q
o 01 + :
Vi
m /
2
§
+
V4 Al
08°1
y8°E=14

A

A

G00°0

10°0

¢10°0

20°0

6Z0'0

€0°0

60



0.06

0.05

0.03

0.02

0.01

0 0.25 0.5 0.75 1.0 1.25
wu, , < x 10

°
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